Ou seja, um mundo com vegetais pouco ramificados e imensos espaços entre eles, permitindo o deslocamento de animais de “grande porte” como no caso dos dinossauros. Com o passar das eras, este mundo se transformou e evoluiu para uma nova organização mais eficiente no seu pragmatismo em fixar carbono e crescer ocupando menos espaço, principalmente em regiões de clima temperado onde as florestas se tornaram mais densas. É o alvorecer de uma nova arquitetura natural, mais complexa e interativa. É a era das aves e pássaros e o fim dos pterossauros (répteis alados). É o surgimento da flexibilidade articular dos mamíferos frente a emergência dos espaços irregulares e profundamente curvos. É o período das ramificações emaranhadas, das redes biológicas que transformaram as florestas em uma malha interligada na qual passaram a transitar inúmeras espécies de insetos, seres alados e mamíferos de médio e pequeno porte. Nos estratos superiores das florestas, uma rede fractal interconecta por cima as copas das árvores e por baixo as raízes que também apresentam um padrão de formação autossimilar. A figura abaixo esquematiza a complexidade adquirida por estas florestas a partir do surgimento das angiospermas. O surgimento das angiospermas está relacionado com as profundas transformações ocorridas desde o período cretáceo. Entretanto, não posso afirmar que este padrão de desenvolvimento seja determinado por um gene embrião fractal que impulsione um comportamento autossimilar de crescimento e distribuição, embora tal hipótese me pareça plausível. O fato é que tanto nas monocotiledôneas quanto nas dicotiledôneas (as duas principais divisões das angiospermas), o crescimento ocorre por um tipo de brotamento no qual estruturas semelhantes (embriões fractais) aparecem como se saíssem umas de dentro das outras, semelhante à ilustração feita por Mariana Massarani exclusivamente para este blog (imagem no alto do texto). Nela, vemos indicado em uma bromélia, as futuras folhas que apresentam o mesmo aspecto geral da planta. Ufa! Por enquanto é só.
terça-feira, 30 de junho de 2009
A embriologia fractal do Mesozoico - o comportamento fractal.
Ou seja, um mundo com vegetais pouco ramificados e imensos espaços entre eles, permitindo o deslocamento de animais de “grande porte” como no caso dos dinossauros. Com o passar das eras, este mundo se transformou e evoluiu para uma nova organização mais eficiente no seu pragmatismo em fixar carbono e crescer ocupando menos espaço, principalmente em regiões de clima temperado onde as florestas se tornaram mais densas. É o alvorecer de uma nova arquitetura natural, mais complexa e interativa. É a era das aves e pássaros e o fim dos pterossauros (répteis alados). É o surgimento da flexibilidade articular dos mamíferos frente a emergência dos espaços irregulares e profundamente curvos. É o período das ramificações emaranhadas, das redes biológicas que transformaram as florestas em uma malha interligada na qual passaram a transitar inúmeras espécies de insetos, seres alados e mamíferos de médio e pequeno porte. Nos estratos superiores das florestas, uma rede fractal interconecta por cima as copas das árvores e por baixo as raízes que também apresentam um padrão de formação autossimilar. A figura abaixo esquematiza a complexidade adquirida por estas florestas a partir do surgimento das angiospermas. O surgimento das angiospermas está relacionado com as profundas transformações ocorridas desde o período cretáceo. Entretanto, não posso afirmar que este padrão de desenvolvimento seja determinado por um gene embrião fractal que impulsione um comportamento autossimilar de crescimento e distribuição, embora tal hipótese me pareça plausível. O fato é que tanto nas monocotiledôneas quanto nas dicotiledôneas (as duas principais divisões das angiospermas), o crescimento ocorre por um tipo de brotamento no qual estruturas semelhantes (embriões fractais) aparecem como se saíssem umas de dentro das outras, semelhante à ilustração feita por Mariana Massarani exclusivamente para este blog (imagem no alto do texto). Nela, vemos indicado em uma bromélia, as futuras folhas que apresentam o mesmo aspecto geral da planta. Ufa! Por enquanto é só.
quarta-feira, 17 de junho de 2009
Um pouco de tudo e mais fractais
Para quem leu os últimos posts já sabe quase tudo sobre fractais. Para quem não leu fica aqui o convite para que o faça ou assista o vídeo apresentado pelo matemático espanhol Antonio Pérez Sanz. Durante a minha tese eu estava bem empolgado com o tema fractais e pedi a um aluno de iniciação científica que pesquisasse na internet algo interessante sobre esse tema. Ele me trouxe um artigo chamado “Caos e linguagem dos fractais”. Infelizmente o link que daria acesso ao artigo está corrompido, mas se você quiser saber mais sobre os autores do artigo “André Calixto Vieira” e “César de Oliveira Lopes” faça uma pesquisa na internet. Pois bem, junto com o artigo veio um conceito interessante chamado “embrião fractal”. Para Vieira e Lopes (2003), o embrião fractal é o elemento fundamental da figura, ou seja, aquele que se mostra repetitivo em qualquer escala (lembra-se do que falamos sobre autossimilaridade?). Então, se uma árvore possui ramos que se ramificam “infinitamente”, o embrião fractal, ou elemento fundamental da copa da árvore será uma imagem semelhante a uma forquilha. Concorda?
Dos chamados vegetais superiores temos as Gimnospermas (plantas como as araucárias e pinheiros que possuem sementes sem frutos) e as Angiospermas (orquídeas, mangueiras, bananeiras e uma infinidade de outras plantas que possuem sementes dentro de frutos). Não se sabe ao certo se as angiospermas evoluíram das gimnospermas ou se ambas possuíram um ancestral comum (Crane 1988, Doyle et al. 1994, Price, 1996). O que se sabe é que, de acordo com os registros fósseis, o apogeu das gimnospermas ocorreu durante o baixo e médio Mesozóico (Triássico e Jurássico) e as angiospermas atuais teriam surgido apenas no Cretáceo Inferior há cerca de 140 milhões de anos . Veja a figura abaixo.
Neste momento nos interessa aprofundar o assunto apenas sobre as angiospermas. Estudaremos nas angiospermas os seus dois principais taxons (monocotiledôneas e dicotiledôneas) e as diferenças nas suas vasculaturas. Vamos fazer o seguinte, este post está ficando grande demais e não é a nossa intenção. Me comprometi em discutir a importância do conceito de embrião fractal, sua aplicação na biologia e na evolução das angiospermas e isso parece ter relação com o sistema vascular das monocotiledôneas e dicotiledôneas e outras coisas mais. Então, esperem mais uma semana, ou menos, e tudo isso ficará bem colocado. Grande abraço e até lá.
quinta-feira, 4 de junho de 2009
Fractais na Natureza
Fractais na Natureza
Prezado (a) amigo (a), se quiser utilizar o meu trabalho como referência para o seu trabalho, siga o modelo abaixo
Então, como primeira conclusão, o estudo das formas fractais presentes na natureza corresponde a um tipo de geometria da natureza. Entretanto, é uma geometria que não tem nada a ver com as formas que estamos habitualmente acostumados tais como esferas, polígonos ou mesmo os sólidos platônicos (figura abaixo) que a partir dos quais Platão procurou explicar o universo.
Essas afirmações deixam claro que as formas ou a geometria da natureza respeitam outras leis geométricas. Estas não são definidas apenas pelas dimensões tradicionais, ou seja, a primeira (a reta), segunda (o quadrado) e terceira dimensões (o cubo), mas também pela dimensão dos fractais na qual a autossimilaridade é a principal propriedade (mas não a única).
Qual é a importância dos fractais em biologia? Segundo um cientista chamado Cross (1994), a dimensão fractal pode ser entendida como uma medida de complexidade. De fato, a função de vários órgãos do corpo dos mamíferos bem como a atividade das plantas está relacionada diretamente com a forma adquirida por eles ao longo da evolução. Nós aprendemos nos primeiro e segundo graus que as células do intestino possuem vilosidades e que estas por sua vez possuem microvilosidades. A análise dessas vilosidades mostrou que elas possuem um padrão fractal (microvilosidades que surgem de vilosidades, que surgem de dobras intestinais e que por sua vez surgem das alças curvas intestinas, e assim por diante). A disposição das microvilosidades intestinais potencializa o nível de absorção de nutrientes para o interior da célula devido ao aumento da área ou superfície de contato com os alimentos. Isto só ocorre porque a estrutura é fractal.
O mesmo acontece com as árvores. A disposição fractal da copa das árvores potencializa e maximiza a exposição de uma quantidade enorme de folhas ao sol, permitindo maior eficiência na captação de luz. A disposição fractal das árvores adultas também permite que elas lancem novos ramos durante todo o ano sem que o aumento do perímetro da copa seja perceptível. Então, uma estrutura fractal fornece o máximo de eficiência com o mínimo de ocupação de espaço. Veja o caso dos vasos sanguíneos dos animais.
No caso dos vasos sanguíneos, a natureza de suas ramificações é fractal e como tal tende a um crescimento infinito. Assim, apesar do sangue ocupar pouco espaço, não mais do que 5% do corpo, na maioria dos tecidos nenhuma célula está a uma distância de mais de três ou quatro células de um vaso sanguíneo (Gleick, 1989).
Para concluir, a propriedade fractal da uma determinada vegetação é determinante para o tipo de fauna existente ali. Quanto mais complexa a trama verde de uma floresta, mais favorável será para a presença de pequenos artrópodes e assim por diante. Se você quiser saber mais sobre fractais veja o seguinte site: http://math.rice.edu/~lanius/frac/ ou baixe o programa WINFRACT para windows e divirta-se.
quinta-feira, 21 de maio de 2009
Interface Fractal
Interface Fractal
Prezado (a) amigo (a), se quiser utilizar o meu trabalho como referência para o seu trabalho, siga o modelo abaixo
terça-feira, 12 de maio de 2009
O problema da forma
domingo, 26 de abril de 2009
Voltando ao tema "o que é vida?"
Maturana entende como “ser vivo” toda rede de interações moleculares que produz a si mesma e especifica os seus próprios limites (Maturana & Varela, 2002). Assim, Maturana introduz o conceito de “organização autopoiética” como o tipo de organização que caracteriza os seres vivos (Maturana & Varela, 2002). Autopoiese significa autoprodução ou autocriação. Segundo Emmeche e El-Hani (2000) trata-se de um termo para organização circular de um sistema vivo. Exemplo: Pense em uma célula. Seu limite é dado pela membrana biológica que forma um compartimento separado do meio externo. No interior deste compartimento todos o processos metabólicos ocorrem. Por outro lado, esse limite, ou fronteira, como no caso de uma membrana celular, é um produto do metabolismo do próprio sistema, sem o qual ele não existiria. Assim, a membrana existe por causa do metabolismo. Por outro lado, essa mesma membrana é parte intrínseca do sistema, sem a qual não poderia haver metabolismo. Cada um é determinante para a existência do outro, caso contrario se perderia a unidade do sistema que se desintegraria (figura organização circular, em baixo). Éssa é a idéia da organização circular como atributo definidor dos sistemas vivos. Se por um lado temos uma rede de interações capaz de criar limites (membranas), por outro, esse limite se torna uma condição obrigatória para a operação da própria rede, caracterizando um tipo de complexidade circular. Têm-se aí dois aspectos de um mesmo fenômeno que gera uma unidade autopoiética autônoma, pois toda a sua dinâmica se dará dentro dos seus próprios limites, criando uma unidade distinta e separada dos processos que ocorrem além de suas fronteiras.
Sob esse aspecto, um sistema autopoiético pode ser descrito como um sistema complexo dentro das prerrogativas de Demo (2002) e Gell-man (1996), no sentido de que se trata de uma estrutura dinâmica e emergente, ou seja, muda irreversivelmente de estado ao longo do tempo sem perder a sua organização, pois essa é atemporal. Nesse contexto podemos enxergar os seres humanos. Nascem, se desenvolvem, amadurecem, envelhecem e morrem. Ou seja, mudam de estado por períodos determinados. Entretanto, não podem estar meio vivos. Ou estão vivos ou não. Grande abraço e até a próxima.
sexta-feira, 10 de abril de 2009
O que é a vida?
quinta-feira, 2 de abril de 2009
Pensamentos e hipóteses em Dictyostelium discoideum
quinta-feira, 26 de março de 2009
Genes Fósseis e o Dictyostelium discoideum
quinta-feira, 19 de março de 2009
O dente da galinha
Fig. 1 - Bico de fóssil de pelicano com com projeções semelhantes a dentes. |